
姓 名:毛思锋
职称职务:教授、博导
电子邮箱:sfmao@suda.edu.cn
联系电话:17743517096
办公地址:国际创新药学院701-2室
个人简介:
毛思锋,国际创新药学院教授,博士生导师,课题组长(PI)。本科及硕士毕业于清华大学,博士毕业于日本东京都立大学。2016年至2020年在清华大学化学系从事博士后工作,随后于2020-2024年在日本东京都立大学任助理教授。2022年被授予东京都立大学“青年领袖科学家”荣誉。2025年1月加入www.优德88.cpm 国际创新药学院任特聘教授。
在Chem. Soc. Rev. (IF 40.4), Angew. Chem. (IF 16.1), Adv. Sci. (IF 14.3), Trends Anal. Chem. (IF 11.8), Biosens. Bioelectron. (IF 10.7), Chem. Sci. (IF 7.5), Anal. Chem. (IF 6.8)等国际学术期刊上发表SCI论文60余篇,参与撰写专著2部。论文被引超过1900次,H因子27。获授权中国专利10项,申请中专利5项(中国专利2项,日本专利3项)。主持国家级项目4项,省部级项目1项;参与国家重大仪器研发专项1项,国家自然科学基金面上项目2项。同时长期担任Adv. Sci., Trends Anal. Chem., Anal. Chem., Talanta等多种国际学术期刊独立审稿人。
研究方向:
1. 细胞药物分析:开发细胞原位分析新策略,实现原位单细胞水平给药及实时药物检测,解决药物分析中非悬浮细胞难以原位单细胞分辨率分析的难题;构建包括细胞药物响应、代谢物检测及分析、细胞-细胞信号通讯及药物评价新方法,形成服务于精准医疗的前端性技术分析体系。
2.外泌体细胞治疗及融合机制:针对细胞治疗的关键问题,构建外泌体在线pH调节及单细胞外泌体融合机制的解析新方法,实现单细胞与外泌体高空间分辨率的可控融合,揭示外泌体在细胞通讯和人体调节中的作用和机制,进一步开发外泌体细胞治疗药物。
3.分子水平灵敏度的新型传感器:面向重大疾病早期诊断和筛查的重大需求,以独创的微纳流体系构建单分子水平的疾病标志物检测,实现癌症等重大疾病的早期诊断和筛查;开发新型仪器,服务于国家医疗体系及细胞物质代谢转化机制等方面的基础研究。
4.单细胞及亚细胞分析:构建高精度、区域可控的细胞刺激/损伤方法,验证细胞最小存活单元假说、揭示药物对损伤修复的促进作用、以及细胞局部刺激信号在细胞内和细胞间的传递。
5.纳米材料合成及组装及其在药物分析中的应用:以可控层流为手段,开展有机、无机、生物等材料在纳米尺度的在线合成和组装,实现细胞及组织的局部生化修饰和功能改造,探究细胞及生物体对外源性入侵的局部响应。
代表性论文:(†共同第一作者;*通讯作者)
1. A. Fu,S. Mao*, N. Kasai, H. Zhu, H. Zeng*,Biosensors and Bioelectronics,Dynamic tissue model in vitro and its application for assessment of microplastics-induced toxicity to air-blood barrier (ABB),2024, 115858.
2. J.Yang, Y.He, Z.Li, X.Yang, Y.Gao, M.Chen, Y.Zheng,S.Mao*, X.Shi*,Intelligent wound dressing for simultaneous in situ detection and elimination of pathogenic bacteria,Acta Biomaterialia, 2024, 174, 177-190.
3. S. Mao*,Recent advances in nanowire sensor assembly using laminar flow in open space,TRAC Trends in Analytical Chemistry,2023, 159, 116918.
4. H. Lin, N. Kasai, N. Xu, H. Nakajima, S. Kato, H. Zeng, J.-M. Lin*,S. Mao*,and K. Uchiyama, Localized hydrodynamic flow confinement assisted nanowire sensor for ultrasensitive protein detection,Biosensors and Bioelectronics, 2022, 218, 114788.
5. S. Mao*, X. H. Hu, Y. Tanaka, L. Zhou, C. H. Peng, N. Kasai, H. Nakajima, S. Kato, and K. Uchiyama, A chemo-mechanical switchable valve on microfluidic chip based on a thermally responsive block copolymer,Chinese Chemical Letters, 2022, 33(6), 3083-3086.
6. Y. Nishitani, N. Kasai, H. Nakajima, S. Kato,S. Mao*, and K. Uchiyama,Regioselective fabrication of gold nanowires using open-space laminar flow for attomolar protein detection,Chemical Communications, 2022, 58(27), 4308-4311.
7. L. Zhou, N. Kasai, H. Nakajima, S. Kato,S. Mao*, and K. Uchiyama,In Situ Single-Cell Stimulation and Real-Time Electrochemical Detection of Lactate Response Using a Microfluidic Probe,Analytical Chemistry, 2021, 93(24), 8680-8686.
8. N. Xu, H. F. Lin, S. Lin, W. L. Zhang, S. Han, H. Nakajima,S. Mao*, and J. -M. Lin*,A Fluidic Isolation-Assisted Homogeneous-Flow-Pressure Chip-Solid Phase Extraction-Mass Spectrometry System for Online Dynamic Monitoring of 25-Hydroxyvitamin D3 Biotransformation in Cells,Analytical Chemistry, 2021, 93(4), 2273-2280.
9. Q. S. Huang†,S. Mao†, M. Khan, W. W. Li, Q. Zhang, and J.-M. Lin,Single-cell identification by microfluidic-based in situ extracting and online mass spectrometric analysis of phospholipids expression,Chemical Science, 2020, 11(1), 253-256.
10. S. Feng†,S. Mao†, J. X. Dou, W. W. Li, H. F. Li, and J. M. Lin,An open-space microfluidic chip with fluid walls for online detection of VEGF via rolling circle amplification,Chemical Science, 2019, 10(37), 8571-8576.
11. S. Mao, Q. Zhang, W. Liu, Q. S. Huang, M. Khan, W. L. Zhang, C. H. Lin, K. Uchiyama, and J. M. Lin,Chemical operations on a living single cell by open microfluidics for wound repair studies and organelle transport analysis,Chemical Science, 2019, 10(7), 2081-2087.
12. S. Feng†,S. Mao†, Q. Zhang, W. W. Li, and J. M. Lin,Online Analysis of Drug Toxicity to Cells with Shear Stress on an Integrated Microfluidic Chip,ACS Sensors, 2019, 4(2), 521-527.
13. W. Li†,S. Mao†, M. Khan, Q. Zhang, Q. S. Huang, S. Feng, and J. M. Lin,Responses of cellular adhesion strength and stiffness to fluid shear stress during tumor cell rolling motion,ACS Sensors, 2019, 4(6), 1710-1715.
14. S. Mao, W. L. Zhang, Q. S. Huang, M. Khan, H. Li, K. Uchiyama, and J.-M. Lin,In Situ Scatheless Cell Detachment Reveals Correlation between Adhesion Strength and Viability at Single-Cell Resolution,Angewandte Chemie-International Edition, 2018, 57(1), 236-240.
15. S. Mao, Q. Zhang, H. F. Li, W. L. Zhang, Q. S. Huang, M. Khan, and J. M. Lin,Adhesion analysis of single circulating tumor cell on base layer of endothelial cells using open microfluidics,Chemical Science, 2018, 9(39), 7694-7699.
16. Y. Zhang,S. Mao*, Y. Suzuki, Y. Tanaka, M. Kawaguchi, W. F. Zhang, H. L. E. Zeng, H. Nakajima, M. Yang, and K. Uchiyama*, Elaborately programmed nanowires fabricated using a tapered push-pull nozzle system,Chemical Communications, 2018, 54(7), 719-722.
17. S. Mao, Y. Zhang, Q. Zhang, J. M. Lin, and K. Uchiyama,Local surface modification at precise position using a chemical pen,Talanta, 2018, 187, 246-251.
18. S. Mao, Q. Zhang, H. F. Li, Q. S. Huang, M. Khan, K. Uchiyama, and J. M. Lin,Measurement of Cell-Matrix Adhesion at Single-Cell Resolution Reveals the Functions of Biomaterials for Adherent Cell Culture,Analytical Chemistry, 2018, 90(15), 9637-9643.
19. S. Mao, W. W. Li, Q. Zhang, W. L. Zhang, Q. S. Huang, and J. M. Lin,Cell analysis on chip-mass spectrometry,TRAC-Trends in Analytical Chemistry, 2018, 107, 43-59.
20. C. H. Lin†, L. Lin†,S. Mao†, L. J. Yang, L. L. Yi, X. X. Lin, J. M. Wang, Z. X. Lin, and J. M. Lin,Reconstituting Glioma Perivascular Niches on a Chip for Insights into Chemoresistance of Glioma,Analytical Chemistry, 2018, 90(17), 10326-10333.
21. S. Mao, Y. Zhang, H. F. Li, H. L. Zeng, J. M. Lin, and K. Uchiyama,Writing of nanowires via high viscosity-induced nano diffusive layer,Journal of Materials Chemistry C, 2017, 5(45), 11666-11671.
22. S. Mao, Y. Zhang, W. Zhang, H. Zeng, H. Nakajima, J.-M. Lin, and Katsumi Uchiyama,Convection-Diffusion Layer in an Open Space for Local Surface Treatment and Microfabrication using a Four-Aperture Microchemical Pen,Chemphyschem, 2017, 18, 2357-2363.
23. S. Mao, C. Sato, Y. Suzuki, J. Yang, H. Zeng, H. Nakajima, M. Yang, J.-M. Lin, and K. Uchiyama,Microchemical Pen: An Open Microreactor for Region-Selective Surface Modification,Chemphyschem, 2016, 17(20), 3155-3159.
24. N. Wang†,S. Mao†, W.Liu, J. Wu, H. Li, and J.-M. Lin,Online monodisperse droplets based liquid-liquid extraction on a continuously flowing system by using microfluidic devices,RSC Advances, 2014, 4(23), 11919-11926.
25. S. Mao, J. Zhang, H. Li, and J.-M. Lin,Strategy for Signaling Molecule Detection by Using an Integrated Microfluidic Device Coupled with Mass Spectrometry to Study Cell-to-Cell Communication,Analytical Chemistry, 2013, 85(2), 868-876.
26. S. Mao, D. Gao, W. Liu, H. Wei, and J.-M. Lin,Imitation of drug metabolism in human liver and cytotoxicity assay using a microfluidic device coupled to mass spectrometric detection,Lab on a Chip, 2012, 12(1), 219-226.
27. H. Lin, N. Xu,S. Mao, H. Nakajima, J.-M. Lin, K. Uchiyama, N. Kasai, L. Lin, Robust Long-Nanowire Fabrication by Clean-Phase-Assisted Micro Chemical Pen for Enhanced Bioassay Sensitivity,Analytical Chemistry, 2024, 96. 14339-14347.
28. Q. Zhang, S. Feng, L. Lin,S. Mao, and J.- M. Lin,Emerging open microfluidics for cell manipulation,Chemical Society Reviews, 2021, 50(9), 5333-5348.
29. N. Wu, Y. J. Zheng, L. Lin,S. Mao, Z. H. Li, and J. -M. Lin,Controllable synthesis of multicompartmental particles using 3D microfluidics,Angewandte Chemie-International Edition, 2020, 59(6), 2225-2229.
30. J. T. Chen,S. Mao, Z. Y. He, L. J. Yang, J. F. Zhang, J. M. Lin, and Z. X. Lin,Proteomic distributions in CD34+ microvascular niche patterns of glioblastoma,Journal of Histochemistry & Cytochemistry, 2022, 70(1), 99-110.
31. Q. Zhang,S. Mao, W. W. Li, Q. S. Huang, S. Feng, Z. Y. Hong, and J. -M. Lin,Microfluidic adhesion analysis of single glioma cells for evaluating the effect of drugs,Science China-Chemistry, 2020, 63(6), 865-870.
32. T. Xie, N. Li,S. Mao, Q. Zhang, and J. -M. Lin,Cell Heterogeneity Revealed by On-Chip Angiogenic Endothelial Cell Migration,ACSOmega, 2020, 5(8), 3857-3862.
33. J. Dou,S. Mao, H. F. Li, and J. M. Lin,Combination stiffness gradient with chemical stimulation directs glioma cell migration on a microfluidic chip,Analytical Chemistry, 2020, 92(1), 892-898.
34. Z. Zhong,S. Mao, H. F. Lin, H. F. Li, J. H. Lin, and J. M. Lin,Alteration of intracellular metabolome in osteosarcoma stem cells revealed by liquid chromatography-tandem mass spectrometry,Talanta, 2019, 204, 6-12.
35. Y. Zheng, Z. N. Wu, M. Khan,S. Mao, K. Manibalan, N. Li, J. M. Lin, and L. Lin,Multifunctional regulation of 3D cell-laden microsphere culture on an integrated microfluidic device,Analytical Chemistry, 2019, 91(19), 12283-12289.
36. W. Zhang,S. Mao, Z. Y. He, Z. N. Wu, and J. M. Lin,In situ monitoring of fluid shear stress enhanced adherence of bacteria to cancer cells on microfluidic chip,Analytical Chemistry, 2019, 91(9), 5973-5979.
37. Q. Zhang,S. Mao, M. Khan, S. Feng, W. L. Zhang, W. W. Li, and J. M. Lin,In situ partial treatment of single cells by laminar flow in the “open space”,Analytical Chemistry, 2019, 91(2), 1644-1650.
38. S. Wang,S. Mao, M. Li, H. F. Li, and J. M. Lin,Near-physiological microenvironment simulation on chip to evaluate drug resistance of different loci in tumour mass,Talanta, 2019, 191, 67-73.
39. H. Lin,S. Mao, H. Zeng, Y. Zhang, M. Kawaguchi, Y. Tanaka, J. M. Lin, and K. Uchiyama,Selective fabrication of nanowires with high aspect ratios using a diffusion mixing reaction system for applications in temperature sensing,Analytical Chemistry, 2019, 91(11), 7346-7352.
40. W. Li, M. Khan, H. F. Li, L. Lin,S. Mao, and J. M. Lin,Homogenous deposition of matrix-analyte cocrystals on gold-nanobowl arrays for improving MALDI-MS signal reproducibility,Chemical Communications, 2019, 55(15), 2166-2169.
41. M. Li,S. Mao, S. Q. Wang, H. F. Li, and J. M. Lin,Chip-based SALDI-MS for rapid determination of intracellular ratios of glutathionetoglutathione disulfide,Science China-Chemistry, 2019, 62(1), 142-150.
42. M. Khan, W. W. Li,S. Mao, S. N. A. Shah, and J. M. Lin,Real-Time Imaging of Ammonia Release from Single Live Cells via Liquid Crystal Droplets Immobilized on the Cell Membrane,Advanced Science, 2019, 6(20).
43. Q. Huang,S. Mao, M. Khan, and J. M. Lin,Single-cell assay on microfluidic devices,Analyst, 2019, 144(3), 808-823.
44. L. Zhou,S. Mao, Q. S. Huang, X. W. He, and J. M. Lin,Inhibition of anaerobic probiotics on colorectal cancer cells using intestinal microfluidic systems,Science China-Chemistry, 2018, 61(8), 1034-1042.
45. Z. Zhong,S. Mao, H. F. Lin, J. M. Lin, and J. H. Lin,Comparative proteomics of cancer stem cells in osteosarcoma using ultra-high-performance liquid chromatography and Orbitrap Fusion mass spectrometer,Talanta, 2018, 178, 362-368.
46. Y. Zhang, H. L. Zeng,S. Mao, S. Kondo, H. Nakajima, S. Kato, C. L. Ren, and K. Uchiyama,Reversibly Switching Molecular Spectra,ACS Applied Materials & Interfaces, 2018, 10(27), 23247-23253.
47. W. L. Zhang, Z. Y. He, L. L. Yi,S. Mao, H. F. Li, and J. M. Lin,Biosensors and Bioelectronics,A dual-functional microfluidic chip for on-line detection of interleukin-8 based on rolling circle amplification,2018, 102, 652-660.
48. Z. N. Wu, L. Lin, M. Khan, W. F. Zhang,S. Mao, Y. J. Zheng, Z. H. Li, and J. M. Lin,DNA-Mediated rolling circle amplification for ultrasensitive detection of thrombin using MALDI-TOF mass spectrometry,Chemical Communications, 2018, 54(82), 11546-11549.
49. Z. N. Wu, M. Khan,S. Mao, L. Lin, and J. M. Lin,Combination of nano-material enrichment and dead-end filtration for uniform and rapid sample preparation in matrix-assisted laser desorption/ionization mass spectrometry,Talanta, 2018, 181, 217-223.
50. J. M. Wang,S. Mao, H. F. Li, and J. M. Lin,Multi-DNAzymes-functionalized gold nanoparticles for ultrasensitive chemiluminescence detection of thrombin on microchip,Analytica Chimica Acta, 2018, 1027, 76-82.
51. W. W. Li, M. Khan,S. Mao, S. Feng, and J. M. Lin,Advances in tumor-endothelial cells co-culture and interaction on microfluidics,Journal of Pharmaceutical Analysis, 2018, 8(4), 210-218.
52. M. Khan, Z. N. Wu,S. Mao, S. N. A. Shah, and J. M. Lin,Controlled grafted poly(quartanized-4-vinylpyridine-co-acrylicacid) brushes allure bacteria for effective antimicrobial surfaces,Journal of Materials Chemistry B, 2018, 6(22), 3782-3791.
53. M. Khan,S. Mao, W. W. Li, and J. M. Lin,Microfluidic devices in the fast-growing domain of single-cell analysis,Chemistry-a European Journal, 2018, 24(58), 15398-15420.
54. Q. S. Huang,S. Mao, M. Khan, L. Zhou, and J. M. Lin,Dean flow assisted cell ordering system for lipid profiling in single-cells using mass spectrometry,Chemical Communications, 2018, 54(21), 2595-2598.
55. Z. Y. He, W. L. Zhang,S. Mao, N. Li, H. F. Li, and J. M. Lin,Shear Stress-Enhanced Internalization of Cell Membrane Proteins Indicated by a Hairpin-Type DNA Probe,Analytical Chemistry, 2018, 90(9), 5540-5545.
56. H. Zeng, Y. Zhang,S. Mao, H. Nakajima, and K. Uchiyama,A reversibly electro-controllable polymer brush for electro-switchable friction,Journal of Materials Chemistry C, 2017, 5(24), 5877-5881.
57. S. Shan, Z. Y. He,S. Mao, M. S. Jie, L. L. Yi, and J. M. Lin,Quantitative determination of VEGF165 in cell culture medium by aptamer sandwich based chemiluminescence assay,Talanta, 2017, 171, 197-203.
58. M. Jie,S. Mao, H. Liu, Z. He, H. F. Li, and J. M. Lin,Evaluation of drug combination for glioblastoma based on an intestine-liver metabolic model on microchip,Analyst, 2017,142 (19), 3629-3638.
59. M. Jie,M. Jie,S. Mao, H. F. Li, and J. M. Lin,Multi-channel microfluidic chip-mass spectrometry platform for cell analysis,Chinese Chemical Letters, 2017,28,1625-1630.
60. J. T. Chen,S. Mao, H. F. Li, M. C. Zheng, L. G. Yi, J. M. Lin, and Z. X. Lin,The pathological structure of the perivascular niche in different microvascular patterns of glioblastoma,PloS One, 2017, 12(8).
61. W. Zhang,S. Mao, J. Yang, H. Zeng, H. Nakajima, S. Kato, and K. Uchiyama,The use of an inkjet injection technique in immunoassays by quantitative on-line electrophoretically mediated microanalysis,Journal of Chromatography A, 2016, 1477, 127-131.
62. J. Yang, D. Katagiri,S. Mao, H. Zeng, H. Nakajima, S. Kato, and K. Uchiyama,Inkjet printing based assembly of thermoresponsive core-shell polymer microcapsules for controlled drug release,Journal of Materials Chemistry B, 2016, 4(23), 4156-4163.
63. J. Yang, D. Katagiri,S. Mao, H. Zeng, H. Nakajima, and K. Uchiyama,Generation of controlled monodisperse porous polymer particles by dipped inkjet injection,RSC Advances, 2015, 5(10), 7297-7303.
64. J. Yang, M. Hida,S. Mao, H. Zeng, H. Nakajima, and K. Uchiyama,A chemo-mechanical switch for controllable water transportation based on a thermally responsive block copolymer,Chemical Communications,2014, 50(71), 10265-10268.
65. W. Liu,S. Mao, J. Wu, and J.-M. Lin,Development and applications of paper-based electrospray ionization-mass spectrometry for monitoring of sequentially generated droplets,Analyst, 2013, 138(7), 2163-2170.
66. F. Chen,S. Mao, H. Zeng, S. Xue, J. Yang, H. Nakajima, J.-M. Lin, and K. Uchiyama,Inkjet nanoinjection for high-thoughput chemiluminescence immunoassay on multicapillary glass plate,Analytical Chemistry, 2013, 85(15), 7413-7418.
67. J. Liu, D. Gao,S. Mao, and J.-M. Lin,A microfluidic photolithography for controlled encapsulation of single cells inside hydrogel microstructures,Science China-Chemistry, 2012, 55(4), 494-501.
68. H. Wei, H. Li,S. Mao, and J.-M. Lin,Cell Signaling Analysis by Mass Spectrometry under Coculture Conditions on an Integrated Microfluidic Device,Analytical Chemistry, 2011, 83(24), 9306-9313.
69. W. Liu, H. Wei, Z. Lin,S. Mao, and J.-M. Lin,Biosensors and Bioelectronics,Rare cell chemiluminescence detection based on aptamer-specific capture in microfluidic channels,2011, 28(1), 438-442.
代表性专著:
1.S. Mao, J.-M. Lin, Chapter 9 Microfluidic Chip-Based Live Single-Cell Probes.Microfluidics for Single-Cell Analysis, Springer, Singapore, 2019.
2.毛思锋,林金明,第六章开放式微流体细胞分析。微流控细胞分析,北京化工出版社,2021.