Adv. Funct. Mater.: Chemomechanics Engineering Promotes the Catalytic Activity of Spinel Oxides for Sulfur Redox Reaction

time:2024-06-14Hits:10设置


Title:

Chemomechanics Engineering Promotes the Catalytic Activity of Spinel Oxides for Sulfur Redox Reaction

Authors:

Lei Wang1,2, Hongtai Li1,2, Tianran Yan1,2, Cheng Yuan1,2, Genlin Liu1,2, Gang Zhao1,2, Pan Zeng3, and Liang Zhang1,2*

Institutions:

1Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China

2Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China

3Institute for Advanced Study School of Mechanical Engineering, Chengdu University, Chengdu 610106, China

Abstract:

Cooperative catalysis is a promising approach to enhance the sluggish redox kinetics of lithium polysulfides (LiPSs) for practical lithium–sulfur (Li–S) batteries. However, the elusory synergistic effect among multiple active sites makes it challenging to accurately customize the electronic structure of catalysts. Herein, a strategy of precisely tailoringegorbitals of spinel oxides through chemomechanics engineering is porposed to regulate LiPSs retention and catalysis. By manipulating the regulable cations in MnxCo3-xO4, it is theoretically and experimentally revealed that the lattice strain induced by the Jahn–Teller active and high-spin Mn3+at octahedral (Oh) sites can increase theegoccupancy of low-spin Co3+Oh, which effectively regulates the chemical affinity toward LiPSs and establishes an unblocked channel for intrinsic charge transfer. This leads to a volcano-type correlation between theegoccupancy at Oh sites and sulfur redox activity. Benefitting from the cooperative catalysis of dual-active sites, MnCo2O4with an averageegoccupancy of 0.45 affords the most appropriate adsorption strength and rapid redox kinetics toward LiPSs, leading to remarkable rate performance and capacity retention for the assembled Li–S batteries. This work demonstrates the promise of chemomechanics engineering for optimizing theegoccupancy to achieve efficient sulfur redox catalysts.

IF:

19.00

Link:

https://onlinelibrary.wiley.com/doi/10.1002/adfm.202404184


Editor: Guo Jia




返回 原图
/